
Component Technologies on Google Android
Master Seminar

Michael Eckel

University of Applied Sciences Gießen-Friedberg
Department of Mathematics, Natural Sciences and Computing

January 7, 2011



Android Android’s Component System OSGi on Android ROCS Conclusion References

Outline

1 Android

2 Android’s Component System

3 OSGi on Android

4 ROCS: a Remotely Provisioned OSGi Framework

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Outline

1 Android

2 Android’s Component System

3 OSGi on Android

4 ROCS: a Remotely Provisioned OSGi Framework

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

What is Android?

Mobile Operating System
Developed by Google
First version released in 2008
Largely open-source
Based on Linux 2.6
Programming is done in Java

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

System Architecture

Figure: System architecture of Android

Michael Eckel Component Technologies on Google Android

Source: http://developer.android.com/images/system-architecture.jpg

http://developer.android.com/images/system-architecture.jpg


Android Android’s Component System OSGi on Android ROCS Conclusion References

What is the Dalvik Virtual Machine (DVM)?

Developed by Google
Based on Apache Harmony
Optimized for mobile devices
Makes use of processor registers (unlike the JVM)

Register machine vs. Pushdown automaton
Executes DEX bytecode (Not Java bytecode!)

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

DEX bytecode

Much more compact than Java bytecode
But does not support

all Java language features (e. g. Reflection)
the whole Java framework (e. g. Swing, AWT, . . . )

Figure: How to create DEX bytecode from Java sourcecode

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

DEX bytecode

Much more compact than Java bytecode
But does not support

all Java language features (e. g. Reflection)
the whole Java framework (e. g. Swing, AWT, . . . )

Figure: How to create DEX bytecode from Java sourcecode

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Android Applications

Android applications consist of
DEX bytecode
Ressources (e. g. images, sounds, . . . )
Data (e. g. SQLite databases, XML files, . . . )

They are subject to a lifecycle
. . . and are executed in a sandbox
One Linux process per application
One DVM per application
Own UID and GID

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Outline

1 Android

2 Android’s Component System
Components in Android
Communication between Components
Realization of a Plugin System in Android

3 OSGi on Android

4 ROCS: a Remotely Provisioned OSGi Framework

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Definition of a Software Component

Definition by the European Conference on Object-Oriented
Programming (ECOOP) in 1996:

“A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third parties.”

In short:
1 Contractually specified interface
2 Explicit context dependencies
3 Independent deployment

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Definition of a Software Component

Definition by the European Conference on Object-Oriented
Programming (ECOOP) in 1996:

“A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third parties.”

In short:
1 Contractually specified interface
2 Explicit context dependencies
3 Independent deployment

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

What is a Component Model?

Components must conform to a component model!

A component model specifies the following:
Form and properties of components
How components interact with each other
How components can be combined

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Outline

1 Android

2 Android’s Component System
Components in Android
Communication between Components
Realization of a Plugin System in Android

3 OSGi on Android

4 ROCS: a Remotely Provisioned OSGi Framework

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Components in Android

Activities
Interaction with the user
Presentation of the user interface

Services
Used to run background tasks
They do not have an user interface

Content Providers
Providing data to other applications
“Break out” from the sandbox

Broadcast Receivers
Receive broadcasts (from Android system or other applications)

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Outline

1 Android

2 Android’s Component System
Components in Android
Communication between Components
Realization of a Plugin System in Android

3 OSGi on Android

4 ROCS: a Remotely Provisioned OSGi Framework

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Communication between Components

Is done via Intents and Intent Filters
Intent announces wish for communication
Intent Filter receives this wish
Intent must match conditions of the Intent Filter

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Intent Filters

Are explicitly defined in the Android manifest
(AndroidManifest.xml)
That complies to point 1 of the definition of a component

...
<receiver android:name="org.example.MyReceiver">
<intent-filter>
<action android:name="org.example.TEST" />

</intent-filter>
</receiver>
...

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Intents

Are not explicitly defined anywhere
Only in the Java code
(Maybe) violates point 2 of the definition of a component
It is up to the programmer to document the interface
Would be nice to see all dependencies explicitly

Explicit vs. implicit Intents

/* explicit intent */
Intent ei = new Intent(org.example.MyReceiver.class);

/* implicit intent */
Intent ii = new Intent("org.example.TEST");

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Sending an Intent

Equipping additional data

Intent i = new Intent(Intent.ACTION_SENDTO);
i.setData(Uri.parse("mailto:you@mail.com"));
i.putExtra(Intent.EXTRA_SUBJECT, "Lottery");
i.putExtra(Intent.EXTRA_TEXT, "You won the Jackpot!");
startActivity(i);

An appropriate application is being invoked

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Outline

1 Android

2 Android’s Component System
Components in Android
Communication between Components
Realization of a Plugin System in Android

3 OSGi on Android

4 ROCS: a Remotely Provisioned OSGi Framework

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Realization of a Plugin System in Android

Involved Components
Basic Application
Plugins

Every component is realized as an own application!

Communication
Basic Application

Sends a broadcast on startup
Waits for answer from plugins

Plugins
Wait for broadcast from basic application
Send answer broadcast to basic application

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Realization of a Plugin System in Android

Involved Components
Basic Application
Plugins

Every component is realized as an own application!

Communication
Basic Application

Sends a broadcast on startup
Waits for answer from plugins

Plugins
Wait for broadcast from basic application
Send answer broadcast to basic application

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Basic Application
Request all plugins on startup. . .

...
public class BasicApplication extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
...
/* request all plugins */
Intent i = new Intent("org.example.REQUEST_PLUGIN");
sendBroadcast(i);
...

}
...

}
...

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Basic Application
Intent Filter for receiving response from plugins

...
<receiver android:name=".BasicApplicationResponseReceiver">
<intent-filter>
<action android:name="org.example.PLUGIN_RESPONSE" />

</intent-filter>
</receiver>
...

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Basic Application
Broadcast Receiver for receiving response from plugins

...
public class BasicApplicationResponseReceiver extends

BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {
/* process plugin answer */
String packageName = intent.getStringExtra("package_name");
...

}
}
...

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Plugins
Intent Filter and Broadcast Receiver for plugins

...
<receiver android:name=".Plugin1RequestReceiver">
<intent-filter>
<action android:name="org.example.REQUEST_PLUGIN" />

</intent-filter>
</receiver>
...

...
public class Plugin1RequestReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {
/* send broadcast response to basic application */
Intent i = new Intent("org.example.PLUGIN_RESPONSE");
i.putExtra("package_name", context.getPackageName());
context.sendBroadcast(i);

}
}
...

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Android’s Component System
Conclusion

Plugin systems are easy to realize
Plugins can be deployed independently
So point 3 of the definition of a component is fulfilled

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

WebSMS

Realizes a similiar plugin system
Is open-source
Text messages can be sent over online services
Instead of the cellular phone network
https://github.com/felixb/websms/

Michael Eckel Component Technologies on Google Android

https://github.com/felixb/websms/


Android Android’s Component System OSGi on Android ROCS Conclusion References

Outline

1 Android

2 Android’s Component System

3 OSGi on Android
Differences between OSGi and Android’s Component System
OSGi Components on Android

4 ROCS: a Remotely Provisioned OSGi Framework

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

What is OSGi?

OSGi is a dynamic module system for Java and is specified by the
OSGi Alliance.

“OSGi technology is Universal Middleware. OSGi technology
provides a service-oriented, component-based environment for
developers and offers standardized ways to manage the software
lifecycle. These capabilities greatly increase the value of a wide
range of computers and devices that use the Java™ platform.”

No further explanation will be given at this point.

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Why running OSGi on Android?

There are several advantages:
OSGi specific features are needed
Porting an existing OSGi application to Android
Reusing an already existing OSGi component/bundle

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Outline

1 Android

2 Android’s Component System

3 OSGi on Android
Differences between OSGi and Android’s Component System
OSGi Components on Android

4 ROCS: a Remotely Provisioned OSGi Framework

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

OSGi vs. Android’s Component System

No need for IPC (overhead) On crash only one application
crashes

Michael Eckel Component Technologies on Google Android

Source: http://felix.apache.org/site/presentations.data/OSGi%20on%20Google%20Android%
20using%20Apache%20Felix.pdf

http://felix.apache.org/site/presentations.data/OSGi%20on%20Google%20Android%20using%20Apache%20Felix.pdf
http://felix.apache.org/site/presentations.data/OSGi%20on%20Google%20Android%20using%20Apache%20Felix.pdf


Android Android’s Component System OSGi on Android ROCS Conclusion References

Outline

1 Android

2 Android’s Component System

3 OSGi on Android
Differences between OSGi and Android’s Component System
OSGi Components on Android

4 ROCS: a Remotely Provisioned OSGi Framework

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

OSGi Components on Android

OSGi frameworks for Android
Apache Felix successfully ported to Android
R-OSGi is also available

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Running OSGi components on Android (I)

There are two simple steps to follow:
1 Create a normal OSGi bundle, e. g. Dummy.jar with following

contents:
META-INF/MANIFEST.MF
org/example/Dummy.class
org/example/impl/DummyImpl.class

The interface org.example.Dummy must be exposed in the
manifest file

2 Convert the bundle to Dalvik format using dx tool:
dx --dex --output=DummyDex.jar Dummy.jar

The contents now should be as follows:
META-INF/MANIFEST.MF
classes.dex

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Running OSGi components on Android (II)

R-OSGi needs exposed interfaces to be available as .class file:
META-INF/MANIFEST.MF

classes.dex

org/example/Dummy.class

Now the JAR is ready for deployment

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Outline

1 Android

2 Android’s Component System

3 OSGi on Android

4 ROCS: a Remotely Provisioned OSGi Framework
ROCS on OSGi
OSGi Issues
The ROCS Solution

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

ROCS

What is ROCS?
ROCS (Remote OSGi Caching Service) is a remotely provisioned
OSGi framework for ambient/mobile systems.

Why ROCS?
For providing OSGi bundles to mobile devices by directly loading them
from network into the devices main memory.

Advantages
Administrators need to manage only one application repository
Security constraints can be checked/enforced at a single point
No need for installing software
. . .

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

ROCS

What is ROCS?
ROCS (Remote OSGi Caching Service) is a remotely provisioned
OSGi framework for ambient/mobile systems.

Why ROCS?
For providing OSGi bundles to mobile devices by directly loading them
from network into the devices main memory.

Advantages
Administrators need to manage only one application repository
Security constraints can be checked/enforced at a single point
No need for installing software
. . .

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

ROCS

What is ROCS?
ROCS (Remote OSGi Caching Service) is a remotely provisioned
OSGi framework for ambient/mobile systems.

Why ROCS?
For providing OSGi bundles to mobile devices by directly loading them
from network into the devices main memory.

Advantages
Administrators need to manage only one application repository
Security constraints can be checked/enforced at a single point
No need for installing software
. . .

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Outline

1 Android

2 Android’s Component System

3 OSGi on Android

4 ROCS: a Remotely Provisioned OSGi Framework
ROCS on OSGi
OSGi Issues
The ROCS Solution

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

ROCS on OSGi

ROCS uses Java’s remote class loading mechanisms
Resources are directly loaded into memory
Loading resources from network is similar to loading from a slow
flash drive

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Outline

1 Android

2 Android’s Component System

3 OSGi on Android

4 ROCS: a Remotely Provisioned OSGi Framework
ROCS on OSGi
OSGi Issues
The ROCS Solution

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

OSGi Issues

OSGi has one drawback:
Bundles are deployed into a local cache before they are loaded
into the device’s memory

Normally done by using a local file system cache
Cache stores all currently installed bundles
Remote bundles are loaded as follows:

Bundle Repository → Device’s Local Cache → Device’s Main
Memory

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Outline

1 Android

2 Android’s Component System

3 OSGi on Android

4 ROCS: a Remotely Provisioned OSGi Framework
ROCS on OSGi
OSGi Issues
The ROCS Solution

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

The ROCS Architecture
Consists of:

Mobile devices (with ROCS OSGi frameworks)
Remote cache servers (ROCS servers)

Figure: The ROCS Architecture [OP08]
Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

ROCS Bundle Loading

With ROCS bundles are loaded as follows:
Bundle Repository → ROCS Server’s Local Cache → Device’s
Main Memory

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Outline

1 Android

2 Android’s Component System

3 OSGi on Android

4 ROCS: a Remotely Provisioned OSGi Framework

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Conclusion

1 Android

2 Android’s Component System
Components in Android
Communication between Components
Realization of a Plugin System in Android

3 OSGi on Android
Differences between OSGi and Android’s Component System
OSGi Components on Android

4 ROCS: a Remotely Provisioned OSGi Framework
ROCS on OSGi
OSGi Issues
The ROCS Solution

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Conclusion

1 Android
2 Android’s Component System

Components in Android
Communication between Components
Realization of a Plugin System in Android

3 OSGi on Android
Differences between OSGi and Android’s Component System
OSGi Components on Android

4 ROCS: a Remotely Provisioned OSGi Framework
ROCS on OSGi
OSGi Issues
The ROCS Solution

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Conclusion

1 Android
2 Android’s Component System

Components in Android
Communication between Components
Realization of a Plugin System in Android

3 OSGi on Android
Differences between OSGi and Android’s Component System
OSGi Components on Android

4 ROCS: a Remotely Provisioned OSGi Framework
ROCS on OSGi
OSGi Issues
The ROCS Solution

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Conclusion

1 Android
2 Android’s Component System

Components in Android
Communication between Components
Realization of a Plugin System in Android

3 OSGi on Android
Differences between OSGi and Android’s Component System
OSGi Components on Android

4 ROCS: a Remotely Provisioned OSGi Framework
ROCS on OSGi
OSGi Issues
The ROCS Solution

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Conclusion

1 Android
2 Android’s Component System

Components in Android
Communication between Components
Realization of a Plugin System in Android

3 OSGi on Android
Differences between OSGi and Android’s Component System
OSGi Components on Android

4 ROCS: a Remotely Provisioned OSGi Framework
ROCS on OSGi
OSGi Issues
The ROCS Solution

5 Conclusion

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

References I

[Bec] Felix Bechstein.
Sourcecode of WebSMS.
URL https://github.com/felixb/websms/.

[BP09] Arno Becker and Markus Pant.
Android – Grundlagen und Programmierung, March 2009.
URL http://www.androidbuch.de.

[Eur96] European Conference on Object-Oriented Programming (ECOOP).
Definition of a Software Component, 1996.
URL http://www.eecs.berkeley.edu/~newton/Classes/
EE290sp99/lectures/ee290aSp994_1/tsld009.htm.
[Online; Accessed December 24, 2010].

[FIM+09] Stephane Frenot, Noha Ibrahim, Frederic Le Mouel, Amira Ben Hamida,
Julien Ponge, Mathieu Chantrel, and Denis Beras.
ROCS: a Remotely Provisioned OSGi Framework for Ambient Systems,
2009.

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

References II

[Goo10a] Google Inc.
System Architecture of Android, December 2010.
URL http://developer.android.com/images/
system-architecture.jpg.

[Goo10b] Google Inc.
The AndroidManifest.xml File, December 2010.
URL http://developer.android.com/guide/topics/
manifest/manifest-element.html.
[Online; Accessed December 24, 2010].

[Goo10c] Google Inc.
What is Android?, December 2010.
URL http://developer.android.com/guide/basics/
what-is-android.html.

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

References III

[Heu10] Stephan Heuser.
Entwicklung eines Frameworks zur sicheren mehrseitigen Aushandlung
von Policies in Ambient-Intelligence Umgebungen.
Master’s thesis, Technical University Darmstadt, April 2010.

[HKM10] Sayed Hashimi, Satya Komatineni, and Dave MacLean.
Pro Android 2.
Apress, March 2010.

[Lum07] Luminis.
Apache Felix on Google Android, November 2007.
URL http://lsd.luminis.nl/
osgi-on-google-android-using-apache-felix/.

[OP08] Marcel Offermans and Karl Pauls.
OSGi on Google Android using Apache Felix, April 2008.
URL http://opensource.luminis.net.

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

References IV

[OSGa] OSGi Alliance.
OSGi Alliance Specifications.
URL http://www.osgi.org/Specifications/HomePage.
[Online; Accessed December 19, 2010].

[OSGb] OSGi Alliance.
OSGi Technology.
URL http://www.osgi.org/About/Technology.
[Online; Accessed December 20, 2010].

[Sch10a] Julian Schütte.
Felix OSGi on Android, 2010.
URL http://linkality.org/felix-osgi-on-android/.
[Online; Accessed November 24, 2010].

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

References V

[Sch10b] Julian Schütte.
R-OSGi on Android, 2010.
URL http://linkality.org/r-osgi-on-android/.
[Online; Accessed November 25, 2010].

[The] The Apache Software Foundation.
Apache Felix.
URL http://felix.apache.org/.

[Wik10] Wikipedia, The Free Encyclopedia.
Komponente (Software), 2010.
URL http://de.wikipedia.org/w/index.php?title=
Komponente_(Software)&oldid=75243743.
[Online; Accessed December 24, 2010].

Michael Eckel Component Technologies on Google Android



Android Android’s Component System OSGi on Android ROCS Conclusion References

Thank you for listening!

Michael Eckel Component Technologies on Google Android

Source: http://commons.wikimedia.org/wiki/File:Android_robot_skateboarding.svg

http://commons.wikimedia.org/wiki/File:Android_robot_skateboarding.svg


Android Android’s Component System OSGi on Android ROCS Conclusion References

Questions?

Michael Eckel Component Technologies on Google Android


	Android
	Android's Component System
	Components in Android
	Communication between Components
	Realization of a Plugin System in Android

	OSGi on Android
	Differences between OSGi and Android's Component System
	OSGi Components on Android

	ROCS: a Remotely Provisioned OSGi Framework
	ROCS on OSGi
	OSGi Issues
	The ROCS Solution

	Conclusion

